
1 | P a g e D e p t o f C S E , M B I T S

MODULE 2

PROCESS MANAGEMENT

PROCESS

 Current-day computer systems allow multiple programs to

be loaded into memory and executed concurrently.

 Process is a program in execution.

 A process is the unit of work in a modern time-sharing

system.

 A system therefore consists of a collection of processes: OS

processes executing system code and user processes

executing user code.

 All these processes can execute concurrently with the CPU

multiplexed among them.

 By switching the CPU between processes, OS can make

the computer more productive.

 A process needs a program code, which is known as the text

section.

 It also includes the current activity, as represented by the

value of the program counter and the contents of the

processor's registers.

 A process generally also includes the process stack, which

contains temporary data (such as function parameters, return

addresses, and local variables), and a data section, which

contains global variables.

 A process may also include a heap, which is memory that is

dynamically allocated during process run time.

 A program is a passive entity, such as a file containing a

list of instructions stored on disk (often called an executable

file); whereas a process is an active entity, with a program

2 | P a g e D e p t o f C S E , M B I T S

counter specifying the next instruction to execute and a set

of associated resources.

 A program becomes a process when an executable file is

loaded into memory.

 Two common techniques for loading executable files are

double-clicking an icon representing the executable file

and entering the name of the executable file on the

command line

 Two processes may be associated with the same program

 Eg: several users may be running different copies of the

mail program, or the same user may invoke many copies of

the Web browser program.

 Each of these is a separate process; and although the text

sections are equivalent, the data, heap, and stack sections

vary.

3 | P a g e D e p t o f C S E , M B I T S

PROCESS STATES

 As a process executes, it changes its state.

 The state of a process is defined as the current activity

of that process.

 Each process may be in one of the following states:

1. New: The process is being created.

2. Running: Instructions are being executed.

3. Waiting: The process is waiting for some event to

occur (such as an I/O completion or reception of a

signal).

4. Ready: The process is waiting to be assigned to a

processor.

5. Terminated: The process has finished execution.

 Only one process can be running on any processor at any

instant.

 Many processes may be ready and waiting.

Transitions are:

 Admitted: new to ready

 Schedule or dispatch: ready to running

 Interrupt: running to ready

 Wait (by I/O or event): running to waiting

4 | P a g e D e p t o f C S E , M B I T S

 I/O or event completion: waiting to ready

 Exit: running to terminated

PROCESS CONTROL BLOCK (PCB)

 Each process in the OS is represented by a Process Control

Block (PCB)

 Also called task control block

 PCB stores all information regarding a process

 Process state: The state may be new, ready, running,

waiting, halted, and so on.

 Process number: Specific number to identify the process

 Program counter: The counter indicates the address of

the next instruction to be executed for this process.

 CPU registers: The registers vary in number and type,

depending on the computer architecture. They include

accumulators, index registers, stack pointers, and general-

purpose registers, etc

 Memory-management information: This information

may include such information as the value of the base and

5 | P a g e D e p t o f C S E , M B I T S

limit registers, the page tables, or the segment tables,

depending on the memory system used by OS

 I/O status information: This information includes the list

of I/O devices allocated to the process, a list of open files,

and so on.

 CPU-scheduling information: This information includes

a process priority, pointers to scheduling queues, and any

other scheduling parameters.

 Accounting information: This information includes the

amount of CPU and real time used, time limits, account

numbers, job or process numbers, and so on.

 PCBs are used in CPU switching from process to process as

shown below:

6 | P a g e D e p t o f C S E , M B I T S

THREADS

 Usually, a process is a program that performs a single

thread of execution.

 Many modern OS have extended the process concept to

allow a process to have multiple threads of execution and

thus to perform more than one task at a time.

 For example, when a process is running a word-processor

program, if a single thread of instructions is being

executed, this single thread of control allows the process

to perform only one task at one time. The user cannot

simultaneously type in characters and run the spell

checker within the same process.

 A thread is a single sequence within a process that can

be managed independently.

 A thread is the smallest unit of processing that can be

performed in an OS.

 On a system that supports threads, the PCB is expanded to

include information for each thread. Other changes

throughout the system are also needed to support threads.

PROCESS SCHEDULING

 The objective of multiprogramming is to have some

process running at all times, to maximize CPU utilization.

 The objective of time sharing is to switch the CPU

among processes so frequently that users can interact with

each program while it is running.

7 | P a g e D e p t o f C S E , M B I T S

 To meet these objectives, the process scheduler selects

an available process (possibly from a set of several

available processes) for program execution on the CPU.

 For a single-processor system, there will never be more

than one running process.

 If there are more processes, the rest will have to wait until

the CPU is free and can be rescheduled.

Scheduling Queues

 As processes enter the system, they are put into a job

queue, which consists of all processes in the system.

 The processes that are residing in main memory and are

ready and waiting to execute are kept on a list called the

ready queue.

 This queue is generally stored as a linked list. A ready-

queue header contains pointers to the first and final PCBs

in the list. Each PCB includes a pointer field that points to

the next PCB in the ready queue.

 The system also includes other queues.

 The list of processes waiting for a particular I/O device is

called a device queue.

 Each device has its own device queue.

8 | P a g e D e p t o f C S E , M B I T S

 A common representation of process scheduling is a

queueing diagram

 Rectangular box represents a queue.

 Two types of queues are present: the ready queue and a

set of device queues.

 The circles represent the resources that serve the

queues, and the arrows indicate the flow of processes in

the system.

9 | P a g e D e p t o f C S E , M B I T S

 A new process is initially put in the ready queue. It waits

there until it is selected for execution, or is dispatched.

 Once the process is allocated the CPU and is executing,

one of several events could occur:

 Issue an I/0 request and then be placed in an I/0

queue.

 Create a new child process and wait for child

process's termination.

 Be removed forcibly from the CPU, as a result of an

interrupt, and be put back in the ready queue.

 Expire the time slot

 A process continues this cycle until it terminates, at which

time it is removed from all queues and has its PCB and

resources deallocated.

10 | P a g e D e p t o f C S E , M B I T S

Schedulers

 OS must select processes for execution from scheduling

queues in some fashion. The selection process is carried

out by the appropriate scheduler.

 3 types of schedulers

1. Long-term schedulers

2. Short-term schedulers

3. Medium- term schedulers

 Often, in a batch system, more processes are submitted

than can be executed immediately. These processes are

spooled to a mass-storage device (typically a disk), where

they are kept for later execution.

 The long-term scheduler, or job scheduler, selects

processes from this pool and loads them into memory for

execution.

 The short-term scheduler, or CPU scheduler, selects

from among the processes that are ready to execute and

allocates the CPU to one of them.

 The primary distinction between these two schedulers lies

in frequency of execution. The short-term scheduler must

select a new process for the CPU frequently. A process

may execute for only a few milliseconds before waiting

for an I/0 request. Often, the short-term scheduler

executes at least once every 100 milliseconds. Because of

the short time between executions, the short-term

scheduler must be fast.

 The long-term scheduler executes much less frequently;

minutes may separate the creation of one new process and

the next. The long-term scheduler controls the degree of

multiprogramming (the number of processes in memory).

11 | P a g e D e p t o f C S E , M B I T S

 If the degree of multiprogramming is stable, then the

average rate of process creation must be equal to the

average departure rate of processes leaving the system.

 Thus, the long-term scheduler may need to be invoked

only when a process leaves the system. Because of the

longer interval between executions, the long-term

scheduler can afford to take more time to decide which

process should be selected for execution. It is important

that the long-term scheduler make a careful selection.

 Processes can be divided into two types: I/ 0 bound or

CPU bound.

 An I/O-bound process is one that spends more of its time

doing I/O than it spends doing computations.

 A CPU-bound process, in contrast, generates I/O requests

infrequently, using more of its time doing computations.

 It is important that the long-term scheduler select a good

process mix of I/O-bound and CPU-bound processes.

 If all processes are I/O bound, the ready queue will almost

always be empty, and the short-term scheduler will have

little to do.

 If all processes are CPU bound, the I/O waiting queue

will almost always be empty, devices will go unused, and

again the system will be unbalanced.

 The system with the best performance will thus have a

combination of CPU-bound and I/O-bound processes.

 On some systems, the long-term scheduler may be absent

or minimal.

 For example, time-sharing systems such as UNIX and

Microsoft Windows systems often have no long-term

scheduler but simply put every new process in memory

for the short-term scheduler.

12 | P a g e D e p t o f C S E , M B I T S

 The stability of these systems depends either on a

physical limitation (such as the number of available

terminals) or on the self-adjusting nature of human users.

If performance declines to unacceptable levels on a

multiuser system, some users will simply quit.

 Some OS, such as time-sharing systems, may introduce an

additional, intermediate level of scheduling: Medium-

term scheduler

 The key idea behind a medium-term scheduler is that

sometimes it can be advantageous to remove processes

from memory (and from active contention for the CPU)

and thus reduce the degree of multi-programming.

 Later, the process can be reintroduced into memory, and

its execution can be continued where it left off. This

scheme is called swapping. The process is swapped out,

and is later swapped in, by the medium-term scheduler.

 Swapping may be necessary to improve the process mix

or because a change in memory requirements has

overcommitted available memory, requiring memory to

be freed up.

13 | P a g e D e p t o f C S E , M B I T S

Context Switch

 When an interrupt occurs, the system needs to save the

current context of the process running on the CPU so that

it can restore that context when its processing is done.

 Context is important during suspending the process and

then resuming it.

 The context is represented in the PCB of the process; it

includes the value of the CPU registers, the process state,

and memory-management information.

 Perform a state save of the current state of the CPU and

then a state restore to resume operations.

 Switching the CPU to another process requires

performing a state save of the current process and a state

restore of a different process.

 This task is known as a context switch.

 When a context switch occurs, the kernel saves the

context of the old process in its PCB and loads the saved

context of the new process scheduled to run.

 Context-switch time is pure overhead, because the system

does no useful work while switching.

 Context switching time varies from machine to machine,

depending on the memory speed, the number of registers

that must be copied, and the existence of special

instructions (such as a single instruction to load or store

all registers), etc.

 Typical speeds are a few milliseconds.

 Context-switch times are highly dependent on hardware

support.

 For instance, some processors provide multiple sets of

registers.

14 | P a g e D e p t o f C S E , M B I T S

 A context switch here simply requires changing the

pointer to the current register set.

 If there are more active processes than there are register

sets, the system needs to copy register data to and from

memory, as normal.

OPERATIONS ON PROCESSES

1. PROCESS CREATION

 A process may create several new processes, via a create-

process system call, during the course of execution.

 The creating process is called a parent process, and the

new processes are called the children of that process.

15 | P a g e D e p t o f C S E , M B I T S

 Each of these new processes may in turn create other

processes, forming a tree of processes.

 Most OS identify processes according to a unique process

identifier (or pid), which is typically an integer number.

 The ‘init’ process (which always has a pid of 1) serves as

the root parent process for all user processes.

 Once the system has booted, the ‘init’ process can also

create various user processes

 The ‘kthreadd’ process is responsible for creating

additional processes that perform tasks on behalf of the

kernel

 The ‘sshd’ process is responsible for managing clients

that connect to the system

 The ‘login’ process is responsible for managing clients

that directly log onto the system.

 On UNIX, we can obtain a listing of processes by using

the ps command.

16 | P a g e D e p t o f C S E , M B I T S

 For example, the command ‘ps –el’ will list complete

information for all processes currently active in the

system.

 A process will need certain resources (CPU time,

memory, files, I/O devices) to accomplish its task.

 When a process creates a subprocess, that subprocess may

be able to obtain its resources directly from OS, or it may

be constrained to a subset of the resources of the parent

process.

 The parent may have to partition its resources among its

children, or it may be able to share some resources (such

as memory or files) among several of its children.

 When a process is created, initialization data (input) may

be passed along by the parent process to the child process.

 For example, consider a process whose function is to

display the contents of a file. When it is created, it will

get, as an input from its parent process, the name of the

file

 When a process creates a new process, two possibilities

exist in terms of execution:

1. The parent continues to execute concurrently with its

children.

2. The parent waits until some or all of its children have

terminated.

 There are also two possibilities in terms of the address

space of the new process:

1. The child process is a duplicate of the parent process

(it has the same program and data)

2. The child process has a new program loaded into it.

 In UNIX, a new process is created by the fork() system

call.

17 | P a g e D e p t o f C S E , M B I T S

 The new process consists of a copy of the address space

of the original process. This mechanism allows the parent

process to communicate easily with its child process.

 Both processes (the parent and the child) continue

parallel execution at the instruction after the fork ()

 The return code for the fork() is zero for the new

(child) process, whereas the (nonzero) process

identifier of the child is returned to the parent.

 The parent can then create more children; or, if it has

nothing else to do while the child runs, it can issue a

wait() system call to move itself off the ready queue until

the termination of the child.

 The child process inherits privileges and scheduling

attributes from the parent, as well certain resources, such

as open files.

main()

{

int pid;

/* fork a child process */

pid =fork();

if (pid < 0) //error

{

printf("Fork Failed");

}

else if (pid == 0) // child process

{

//functions of child process

}

else //parent process

{

18 | P a g e D e p t o f C S E , M B I T S

/* parent will wait for the child to complete */

wait () ;

//functions of parent process

}

}

Process creation in UNIX using fork() system call

 The exec() system call can be used after a fork() system

call by one of the two processes to replace the process's

memory space with a new program.

 The exec() system call destroys the memory image of the

program containing the exec() system call and starts its

execution.

 In this manner, the two processes can go their separate

ways.

 In Windows, processes are created in the Win32 API

using the CreateProcess () function which is similar to

fork () in that a parent creates a new child process.

 Whereas fork() has the child process inheriting the

address space of its parent, but CreateProcess() requires

loading a specified program into the address space of the

child process at process creation.

19 | P a g e D e p t o f C S E , M B I T S

 Whereas fork() is passed no parameters, CreateProcess ()

expects no fewer than ten parameters.

 Two important parameters passed to CreateProcess ()

are instances of the STARTUPINFO and

PROCESS_INFORMATION structures.

 STARTUPINFO specifies many properties of the new

process, such as window size and appearance and handles

to standard input and output files.

 The PROCESS_INFORMATION structure contains a

handle and the identifiers to the newly created process

and its thread.

 We invoke the ZeroMemory () function to allocate

memory for each of these structures before proceeding

with CreateProcess ().

 The parent process waits for the child to complete by

invoking the wait() system call. The equivalent of this in

Windows is WaitForSingleObject()

2. PROCESS TERMINATION

 A process terminates when it finishes executing its final

statement and asks OS to delete it by using the exit ()

system call

 At that point, the process may return a status value

(typically an integer) to its parent process (via the wait()

system call).

 All the resources of the process-including physical and

virtual memory, open files, and I/O buffers are

deallocated by OS

20 | P a g e D e p t o f C S E , M B I T S

 Otherwise, a process can forcefully cause the termination

of another process via an appropriate system call (for

example, TerminateProcess () in Win32).

 Usually, such a system call can be invoked only by the

parent of the process that is to be terminated.

 Otherwise, users could arbitrarily kill each other's jobs.

 A parent needs to know the identities of its children.

Thus, when one process creates a new process, the

identity of the newly created process is passed to the

parent.

 A parent may terminate the execution of one of its

children for a variety of reasons, such as these:

1. The child has exceeded its usage of some of the

resources that it has been allocated.

2. The task assigned to the child is no longer required.

3. The parent is exiting, and the OS does not allow a child

to continue if its parent terminates.

 Some systems do not allow a child to exist if its parent

has terminated.

 In such systems, if a process terminates (either normally

or abnormally), then all its children must also be

terminated.

 This phenomenon, referred to as cascading termination,

is normally initiated by OS.

 In UNIX, we can terminate a process by using the exit()

system call

 Its parent process may wait for the termination of a child

process by using the wait() system call.

 The wait() system call returns the process identifier of a

terminated child so that the parent can tell which of its

children has terminated.

21 | P a g e D e p t o f C S E , M B I T S

 When a process terminates, its resources are deallocated

by OS.

 However, its entry in the process table must remain there

until the parent calls wait(), because the process table

contains the process’s exit status.

 A process that has terminated, but whose parent has not

yet called wait(), is known as a zombie process.

 All processes transition to this state when they terminate,

but generally they exist as zombies only briefly.

 Once the parent calls wait(), the process identifier of the

zombie process and its entry in the process table are

released.

 Now consider what would happen if a parent did not

invoke wait() and instead terminated, thereby leaving its

child processes as orphans.

 Linux and UNIX address this scenario by assigning the

‘init’ process as the new parent to orphan processes.

